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Abstract
We obtain solutions of the three-dimensional Dirac equation for radial power-
law potentials at rest mass energy as an infinite series of square integrable
functions. These are written in terms of the confluent hypergeometric function
and chosen such that the matrix representation of the Dirac operator is
tridiagonal. The ‘wave equation’ results in a three-term recursion relation
for the expansion coefficients of the spinor wavefunction which is solved in
terms of orthogonal polynomials. These are modified versions of the Meixner–
Pollaczek polynomials and of the continuous dual Hahn polynomials. The
choice depends on the values of the angular momentum and the power of the
potential.

PACS numbers: 03.65.Pm, 03.65.Ge, 02.30.Gp

1. Introduction

Exact solutions of the wave equation at zero energy attracted attention [1–8] motivated in part
by developments in supersymmetric quantum mechanics [9] and in the search for conditionally
exactly [10, 11] and quasi-exactly [12, 13] solvable problems. From a mathematical point
of view these solutions are interesting since they form, by definition, quasi-exactly solvable
systems due to the fact that they are solvable only for E = 0. Moreover, and despite common
intuition brought about by wide familiarity with the Coulomb problem, some of these solutions
are square integrable and correspond to bound or unbound states [1–3, 6, 14]. Furthermore,
these solutions are very valuable for zero energy limit calculations in various fields of physics.
Such examples are in the study of loosely bound systems, as well as in the calculation of
scattering length and coupling parameters.

It is elementary to note that there exists any number of potentials for the Schrödinger
equation with just one known zero energy eigenstate. This can be seen by noting that the
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Schrödinger equation −χ ′′ + V χ = 0 gives the potential V = U 2 − U ′, where U = −χ ′/χ
and χ is nodeless. In unbroken supersymmetry [9], U 2 ± U ′ are known as the two superpartner
potentials sharing the same energy eigenvalues (i.e., they are isospectral) except for the zero
energy ground state, which belongs only to U 2 − U ′. For our present treatment, however,
symmetry is imposed on the solution space of the problem from the outset resulting in a special
class of solutions.

In a previous paper [6], we made an attempt to solve the relativistic problem at E = 0,
where E is the nonrelativistic energy and the potential function was taken as a power-law type
potential. However, the success of our findings was very limited. It turns out, as we shall see,
that the reason for this shortcoming is due to the stringent constraint that was placed on the
solution space of the problem. This can be explained as follows. Let the spinor wavefunction
χ be an element in a linear vector space with a complete basis set {ψn}∞n=0. Then, we can
expand it as |χ(�r, ε)〉 = ∑

n fn(ε)|ψn(�r)〉, where �r is the configuration space coordinate
and ε is the relativistic energy. In [6], our search for bases was limited to those that carry
diagonal matrix representations of the Hamiltonian H at rest mass energy. That is, we required
H |ψn〉 = εn|ψn〉 = ±mc2|ψn〉, where m is the rest mass of the particle and c is the speed of
light. Consequently, we could obtain a solution only for the case when n = 0. In this work,
however, we relax this constraint by searching for square integrable bases that could support a
tridiagonal matrix representation of the wave operator. That is, the action of the wave operator
on the elements of the basis is allowed to take the general form (H − ε)|ψn〉 ∼ |ψn〉+ |ψn−1〉 +
|ψn+1〉 such that

〈ψn|H − ε|ψm〉 = (An − y)δn,m + Bnδn,m−1 + Bn−1δn,m+1, (1.1)

where y and the coefficients {An,Bn}∞n=0 are real and, in general, functions of the energy,
angular momentum and potential parameters. Therefore, the matrix representation of the
wave equation, which is obtained by expanding |χ〉 as

∑
m fm|ψm〉 in (H − ε)|χ〉 = 0 and

projecting on the left by 〈ψn|, results in the following three-term recursion relation

yfn = Anfn + Bn−1fn−1 + Bnfn+1. (1.2)

Consequently, the problem translates into finding solutions of the recursion relation for
the expansion coefficients of the wavefunction. This will be solved easily and directly by
correspondence with those for well-known orthogonal polynomials. It is obvious that the
solution of (1.2) is obtained modulo an overall factor which is a function of the physical
parameters of the problem but, otherwise, independent of n. The uniqueness of the solution
is achieved by the requirement of normalizability of the wavefunction, 〈χ |χ〉 = 1. Moreover,
the matrix wave equation (1.1) shows that the diagonal representation, which we have obtained
in [6], is a special case that could easily be obtained by the requirement

Bn = 0 and An − y = 0. (1.3)

Thus, the solution space with these constraints could be extremely limited.
The paper is organized as follows: in the following section, we formulate the problem by

writing the three-dimensional Dirac equation with non-minimal coupling to a four-potential.
Spherical symmetry is imposed and we consider the case where the ‘even component’ of the
relativistic potential vanishes while the ‘odd component’ is a power-law radial potential. We
exclude the well-known cases where the potential corresponds, for example, to the Dirac-
oscillator problem or the free case. The main results are obtained in section 3 where we
select an L2 spinor basis that supports a tridiagonal matrix representation for the Dirac wave
operator. The tridiagonal requirement dictates that the problem is solvable only at rest mass
energies, ε = ±mc2. The wave equation results in a three-term recursion relation for the
expansion coefficients of the wavefunction. The solution of this recursion is given in terms
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of either a ‘hyperbolic’ Meixner–Pollaczek polynomial or a ‘modified’ continuous dual Hahn
polynomial depending on the values of the physical parameters. The paper concludes with a
short discussion about the negative energy solutions and the diagonal representation.

2. Dirac equation for power-law potentials

In atomic units h̄ = m = 1, the three-dimensional Dirac Hamiltonian for a four-component
spinor with ‘minimal’ coupling to the time-independent vector potential (A0, �A) reads [15]

H =
(

-λ2A0 + 1 −i -λ �σ · �∇ + -λ2 �σ · �A
−i -λ �σ · �∇ + -λ2 �σ · �A -λ2A0 − 1

)
, (2.1)

where -λ is the Compton wavelength h̄/mc = c−1 and �σ are the three 2 × 2 Hermitian Pauli
matrices. H is measured in units of the rest mass, mc2. Gauge invariance could be used to
eliminate the contribution of the off-diagonal term -λ2 �σ · �A to the Hamiltonian (2.1). However,
our choice of coupling will be non-minimal, which is accomplished by the replacement
-λ2 �σ · �A → ±i -λ2 �σ · �A, respectively. That is the Hamiltonian (2.1) is replaced by the following:

H =
(

-λ2A0 + 1 −i -λ �σ · �∇ + i -λ2 �σ · �A
−i -λ �σ · �∇ − i -λ2 �σ · �A -λ2A0 − 1

)
. (2.2)

It should be noted that this type of coupling does not support an interpretation of (A0, �A) as
the electromagnetic potential unless, of course, �A = 0 (e.g., the Coulomb potential).

We impose spherical symmetry and write (A0, �A) as
[
V (r), 1

-λr̂W(r)
]
, where r̂ is the

radial unit vector �r/r . V(r) and W(r) are real radial functions referred to as the ‘even’
and ‘odd’ components of the relativistic potential, respectively. Because of spherical
symmetry the angular variables could be separated and we can write the radial Dirac equation
(H − ε)|χ〉 = 0 as [15–17](

-λ2V (r) + 1 − ε -λ
[

κ
r

+ W(r) − d
dr

]
-λ
[

κ
r

+ W(r) + d
dr

] -λ2V (r) − 1 − ε

)(
ϕ+(r)

ϕ−(r)

)
= 0, (2.3)

where κ is the spin–orbit quantum number defined as κ = ±(j + 1/2) = ±1,±2, . . . for
	 = j ± 1/2 and ε is the relativistic energy which is measured in units of mc2. ϕ±(r) are the
two components of the radial spinor wave function χ (r). Examples of relativistic problems
that are formulated and solved using this approach are [17]:

(1) Dirac–Coulomb: V (r) = η/r , W(r) = 0
(2) Dirac-oscillator: V(r) = 0, W(r) = η2r

(3) S-wave Dirac–Morse: κ = −1, V (r) = A e−ηr , W(r) = B e−ηr + 1
r

(4) S-wave Dirac–Pöschl–Teller: κ = −1, V(r) = 0, W(r) = A tanh(ηr) + 1
r

(5) S-wave Dirac–Hulthén: κ = −1, V (r) = A(eηr − 1)−1, W(r) = B(eηr − 1)−1 + 1
r

where A and η are the physical parameters associated with the corresponding problem and
B2 = η2 + -λ2A2. For our present problem the even component of the potential vanishes while
the odd component takes the form of the power-law potential W(r) = A/rµ, where A and µ

are non-zero real parameters. Therefore, the radial Dirac equation becomes(
1 − ε -λ

(
κ
r

+ A
rµ − d

dr

)
-λ
(

κ
r

+ A
rµ + d

dr

) −1 − ε

)(
ϕ+(r)

ϕ−(r)

)
= 0. (2.4)

This equation gives one spinor component in terms of the other as follows:

ϕ∓(r) =
-λ

ε ± 1

(
κ

r
+

A

rµ
± d

dr

)
ϕ±(r), (2.5)
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where ε 
= ∓1, respectively. This equation is referred to as the ‘kinetic balance’ relation.
Eliminating one spinor component in favour of the other gives the following second-order
Schrödinger-type differential equation:[

− d2

dr2
+

κ(κ ± 1)

r2
+

A2

r2µ
+

A(2κ ± µ)

rµ+1
− ε2 − 1

-λ2

]
ϕ±(r) = 0. (2.6)

If µ = 1, then the problem corresponds to the case of a free Dirac particle which can easily
be seen by the redefinition κ → κ + A. On the other hand, µ = −1 corresponds to the Dirac-
oscillator problem [18]. Moreover, µ = 0 corresponds to a Dirac–Coulomb-type problem
with A = Z/κ , where Z is the charge. Consequently, we dismiss these cases by requiring that
µ 
= 0,±1. The nonrelativistic limit ( -λ → 0, ε → 1 + -λ2E) of equation (2.6) shows that
the angular momentum quantum number associated with the spinor component ϕ+ is 	 = κ

(	 = −κ − 1) for positive (negative) values of κ , while the corresponding values for ϕ− are
	 = κ − 1 and 	 = −κ , respectively. In the following section we construct an L2 spinor
basis with components

{
φ±

n

}∞
n=0 for the solution space of the problem such that the matrix

representation of the Dirac wave operator H − ε is tridiagonal.

3. Tridiagonal representation and the solution space

The upper component of the spinor basis function which is square integrable and satisfies the
boundary conditions could be written as

φ+
n (r) = anx

α e−x/2Lν
n(x), (3.1)

where α and ν are real parameters and satisfy the conditions that α > 0 and ν > −1. Lν
n(x)

is the orthogonal Laguerre polynomial of order n shown in the appendix. The coordinate x
is defined as x = (ω r)β , where ω and β are non-zero real parameters and ω positive. The
integration measure in terms of the x coordinate is 1

ω|β|x
−1+1/β dx since for ±β > 0 we get∫ ∞

0
dr = ±1

ωβ

∫ ∞

0
x−1+1/β dx, (3.2)

respectively. Accordingly, the choice for the normalization constant of the basis element in
equation (3.1) is taken as

an =
√

ω|β|�(n + 1)/�(n + ν + 1). (3.3)

The requirement of square integrability of φ+
n(r) imposes a stronger condition on the parameter

α for negative values of β, which is that α > −1/2β. Now, the kinetic balance relation
(2.5) suggests that the lower component of the spinor basis is obtained from the upper as
φ−

n ∼ -λ
(

γ

r
+ ρ

rµ + d
dr

)
φ+

n . This could be rewritten as φ−
n ∼ -λx−1/β

(
γ + 1

2ρxξ +x d
dx

)
φ+

n , where
γ and ρ are real dimensionless parameters and ξ = (1 − µ)/β. It turns out that the solution of
the problem is tractable only for non-negative integral values of ξ . This is due to the fact that
the integral

∫
xν+ξ e−xLν

n(x)Lν
m(x) dx ≡ Mnm results in a banded matrix M with bandwidth

2ξ + 1 only if ξ is a non-negative integer. However, if ξ is fractional or a negative integer
then the resulting matrix is ‘full’ (i.e., with non-zero entries everywhere). This situation does
not lead to an exact or closed-form solution; it can only lead to a numerical solution of the
problem. Additionally, the three-term recursion relation for the Laguerre polynomial (A.2)
indicates that the tridiagonal representation is obtained only if ξ = 1. Therefore, from now on
we take β = 1 − µ and, thus, β 
= 0, 1 or 2. Consequently, we can write

φ−
n = 2 -λωτβ

x1/β

(
γ +

1

2
ρx + x

d

dx

)
φ+

n , (3.4)



L2 series solutions of the Dirac equation for power-law potentials at rest mass energy 11233

Table 1. List of constraints on the basis parameters α and ν obtained by the requirement that the
spinor basis with the components (3.1) and (3.5a), (3.5b), (3.5c) is square integrable and satisfies
the boundary conditions.

φ−
n (r) β < 0 (µ > 1) 1 > β > 0 (0 > µ > 1) 2 
= β > 1 (−1 
= µ < 0)

(3.5a): γ = ν − α ν > 0 α > −1
/

2β α > 1
/
β α > 1

/
β

(3.5b): γ = −α ν > −1 α > −1
/

2β α > −1 + 1
/
β α > 0

(3.5c): ρ = ±1 ν > −1 α > −1
/

2β α > 1
/
β α > 1

/
β

where τ is another dimensionless real parameter. These basis parameters will be determined
as we proceed. Substituting the expression for φ+

n from (3.1) and using the differential
and recursion properties of the Laguerre polynomials shown in the appendix we obtain the
following alternative, but equivalent, forms for the lower component of the spinor basis element

φ−
n (r) = -λωτβ anx

α−1/β e−x/2
[
2(γ + α − ν)Lν

n(x)

+ (1 + ρ)(n + ν)Lν−1
n (x) + (1 − ρ)(n + 1)Lν−1

n+1 (x)
]

(3.5a)

φ−
n (r) = -λωτβ anx

α−1/β e−x/2
{
2(γ + α)Lν

n(x) − x
[
(1 − ρ)Lν+1

n (x) + (1 + ρ)Lν+1
n−1(x)

]}
(3.5b)

φ−
n (r) = -λωτβ anx

α−1/β e−x/2

{
2

[(
γ + α − ν + 1

2

)
+ ρ

(
n +

ν + 1

2

)]
Lν

n(x)

− (1 + ρ)(n + ν)Lν
n−1(x) + (1 − ρ)(n + 1)Lν

n+1(x)

}
. (3.5c)

Depending on the range of values of the physical parameters (A, µ and κ) the solution space
will be spanned by one of these three bases elements along with φ+

n(r) of equation (3.1). We
will refer to each of these representations by the equation number of the corresponding basis.
To simplify the solution in the first and second representations we take γ = ν − α in (3.5a) and
γ = −α in (3.5b), respectively. Meeting the square integrability requirement and satisfying
the boundary conditions result in constraints on the basis parameters α and ν shown in
table 1.

In the spinor basis
{
ψn = (φ+

n

φ−
n

)}∞
n=0, the matrix representation of the Dirac wave operator,

H − ε, in (2.4) reads as follows,

〈ψn|H − ε|ψm〉 = (1 − ε)
〈
φ+

n

∣∣φ+
m

〉 − (1 + ε − 1/τ)〈φ−
n |φ−

m〉

+ -λω

{〈
φ+

n

∣∣x−1/β

[
κ − βγ + x

(
A

ωβ
− 1

2
βρ

)]
|φ−

m〉 + n ↔ m

}
(3.6)

where the n ↔ m symbol means that the term inside the curly brackets is repeated with
the indices n and m exchanged. The tridiagonal requirement asserts that the term

〈
φ+

n

∣∣φ+
m

〉
is

compatible with the rest if and only if β = 1 or 2. However, these values have already been
dismissed. Consequently, the first term must be eliminated and the solution of the problem is
obtained only for ε = +1 (i.e., for the rest mass energy mc2). The negative energy solution for
ε = −1 could similarly be obtained as outlined in section 4. Detailed analysis of the spinor
basis with the combined requirements of (1) square integrability, (2) boundary conditions and
(3) tridiagonal representation gives the following three possibilities:
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(3.5a) βκ > 0 and κ 
= −1 (	 
= 0): γ = κ/β, α = (κ + 1)/β, ν = (2κ + 1)/β

(3.5b) βκ < 0: γ = κ/β, α = −κ/β, ν = −(2κ + 1)/β

(3.5c) ρ = sign(βA) = ±1: ν = 2α − 1 − 1/β, ω = |2A/β|1/β .

In the following subsections we obtain the L2 series solution of the problem associated
with each of these three cases.

3.1. Solution in the spinor basis (3.1) and (3.5a)

The two components of the spinor basis functions in (3.1) and (3.5a) could now be rewritten
as:

φ+
n (r) = an x

κ+1
β e−x/2 L

2κ+1
β

n (x), (3.7a)

φ−
n (r) = -λωτβ an x

κ
β e−x/2

[
(1 + ρ)

(
n +

2κ + 1

β

)
L

2κ+1
β

−1
n (x) + (1 − ρ)(n + 1)L

2κ+1
β

−1

n+1 (x)

]
,

(3.7b)

where βκ > 0 and κ 
= −1 (i.e., 	 
= 0). Substituting these into (3.6) with ε = +1 and
γ = κ/β and using the orthogonality and recurrence relations of the Laguerre polynomials
shown in the appendix we obtain the following elements of the symmetric tridiagonal matrix
representation of the Dirac operator:

(H − 1)n,n = -λ2ω2βτ

{(
2n + 1 +

2κ + 1

β

)
[p(ρ2 + 1) + 2qρ] + 2

(
2κ + 1

β
− 1

)
(pρ + q)

}
(3.8a)

(H − 1)n,n−1 = − -λ2ω2βτ [p(ρ2 − 1) + 2qρ]

√
n

(
n +

2κ + 1

β

)
, (3.8b)

where we have defined the following quantities:

p = β(1 − 2τ), q = A

ωβ
− 1

2
βρ. (3.9)

Therefore, the matrix representation of the ‘wave equation’ (H − 1) |χ〉 = 0, where
|χ〉 = ∑

m fm |ψm〉, results in the following three-term recursion relation for the expansion
coefficients of the wavefunction:[(

2n + 1 +
2κ + 1

β

)
(ρ2 + 1 + 2ρq/p) + 2

(
2κ + 1

β
− 1

)
(ρ + q/p)

]
fn

− (ρ2 − 1 + 2ρq/p)

√
n

(
n +

2κ + 1

β

)
fn−1

− (ρ2 − 1 + 2ρq/p)

√
(n + 1)

(
n + 1 +

2κ + 1

β

)
fn+1 = 0. (3.10)

Defining gn =
√

�

(
n+1+ 2κ+1

β

)/
�(n+1) fn and

σ± = (ρ + q/p)2 − (q/p)2 ± 1, ζ =
(

2κ + 1

β
− 1

)
(ρ + q/p), (3.11)
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the recursion relation (3.10) takes the following form:

2

[(
n +

κ + 1/2

β
+

1

2

)
σ+

σ−
+

ζ

σ−

]
gn −

(
n +

2κ + 1

β

)
gn−1 − (n + 1)gn+1 = 0. (3.12)

This bears very close resemblance to the three-term recursion relation (A.8) of the Meixner–
Pollaczek polynomials P λ

n (y, θ) [19] shown in the appendix. Nevertheless, one should take
care in pursuing this resemblance and attach some degree of rigour to the investigation of this
analogy. Depending on the values of the physical constants in the problem, the parameters that
appear in the recursion relation (3.12) may not fall within the permissible range of parameters
that define the polynomial P λ

n (y, θ) as given by equation (A.9). To give a clear illustration of
this point we start by simplifying the above expressions which is achieved by imposing the
‘kinetic balance’ relation (2.5) on the basis elements. That is, we require that equation (3.4)
be identical to the relation (2.5) with ε = +1. This gives

τ = 1/4, γ = κ/β, ρ = 2A/βωβ, (3.13)

resulting in the following parameter assignments:

p = β/2, q = 0, σ± = ρ2 ± 1, ζ = ρ

(
2κ + 1

β
− 1

)
. (3.14)

Substituting these into equation (3.12) gives one of two recursion relations depending on the
range of values of the parameter ρ. For ρ2 > 1 (i.e., ω < |2A/β|1/β) we obtain:

2

[(
n +

κ + 1/2

β
+

1

2

)
cosh θ + y sinh θ

]
gn −

(
n +

2κ + 1

β

)
gn−1 − (n + 1)gn+1 = 0,

(3.15a)

where θ = sinh−1
∣∣ 2ρ

ρ2−1

∣∣ and y = sign(βA)
(

κ+1/2
β

− 1
2

)
. However, if 1 > ρ2 > 0 (i.e.,

ω > |2A/β|1/β), then we obtain

2

[(
n +

κ + 1/2

β
+

1

2

)
cosh θ + y sinh θ

]
gn +

(
n +

2κ + 1

β

)
gn−1 + (n + 1)gn+1 = 0.

(3.15b)

Now we are in a position to make a proper comparison of (3.15a) and (3.15b) with the
recursion relation (A.8) of the Meixner–Pollaczek polynomials. Using the well-known
relations that cosh θ = cos iθ and sinh θ = −i sin iθ , we define the ‘hyperbolic Meixner–
Pollaczek polynomials’ as

P̂ λ
n (y, θ) ≡ P λ

n (−iy, iθ) = �(n + 2λ)

�(n + 1)�(2λ)
e−nθ

2F1(−n, λ + y; 2λ; 1 − e2θ ), (3.16a)

where θ > 0. It satisfies the following modified three-term recursion relation:

2[(n + λ) cosh θ + y sinh θ]P̂ λ
n − (n + 2λ − 1)P̂ λ

n−1 − (n + 1)P̂ λ
n+1 = 0. (3.16b)

Then, the respective solutions of the recursion relations (3.15a) and (3.15b) read as follows:

gn = P̂
κ+1/2

β
+ 1

2
n (y, θ), for ρ2 > 1, (3.17a)

gn = (−)nP̂
κ+1/2

β
+ 1

2
n (y, θ), for 1 > ρ2 > 0. (3.17b)

Consequently, with θ and y as defined below equation (3.15a) and for βκ > 0 and κ 
= −1
(i.e., 	 
= 0), the L2 series solution of the problem for ρ2 > 1 is given by

χa(r) = Na

∞∑
n=0

√
�(n + 1)

/
�

(
n + 1 +

2κ + 1

β

)
P̂

κ+1/2
β

+ 1
2

n (y, θ)ψa
n (r), (3.18a)
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where Na is an overall normalization constant that depends only on the physical parameters
of the problem A, µ and κ and is fixed once and for all. The upper and lower components of
the spinor basis element ψa

n (r) are given by equations (3.7a) and (3.7b), respectively. On the
other hand, for 1 > ρ2 > 0, the corresponding solution is

χa(r) = Na

∞∑
n=0

(−)n

√
�(n + 1)

/
�

(
n + 1 +

2κ + 1

β

)
P̂

κ+1/2
β

+ 1
2

n (y, θ)ψa
n (r). (3.18b)

In the following subsection we repeat briefly the same development to obtain the solution of
the problem for the case where βκ < 0.

3.2. Solution in the spinor basis (3.1) and (3.5b)

We could rewrite the two components of the spinor basis functions in (3.1) and (3.5b) as
follows:

φ+
n (r) = an x

− κ
β e−x/2 L

− 2κ+1
β

n (x), (3.19a)

φ−
n (r) = − -λωτβ an x

− κ+1
β

+1 e−x/2

[
(1 − ρ)L

− 2κ+1
β

+1
n (x) + (1 + ρ)L

− 2κ+1
β

+1

n−1 (x)

]
, (3.19b)

where βκ < 0. Substituting these into (3.6) with ε = +1 and γ = κ/β and using the properties
of the Laguerre polynomials shown in the appendix we obtain

(H − 1)n,n = -λ2ω2βτ

{(
2n + 1 − 2κ + 1

β

)
[p(ρ2 + 1) + 2qρ] + 2

(
2κ + 1

β
− 1

)
(pρ + q)

}
(3.20a)

(H − 1)n,n−1 = − -λ2ω2βτ [p(ρ2 − 1) + 2qρ]

√
n

(
n − 2κ + 1

β

)
, (3.20b)

where the real parameters p and q are as defined in (3.9) above. Following the same
development that started with the matrix elements (3.8) leading to the recursion relation (3.12),
we obtain

2

[(
n − κ + 1/2

β
+

1

2

)
σ+

σ−
+

ζ

σ−

]
gn −

(
n − 2κ + 1

β

)
gn−1 − (n + 1)gn+1 = 0, (3.21)

where gn =
√

�
(
n + 1 − 2κ+1

β

)/
�(n + 1) fn, σ± and ζ are as defined above in (3.11). Imposing

the ‘kinetic balance’, which resulted in the parameter assignments (3.13) and (3.14), and
following the same line of development as in the previous subsection, we arrive at the following
L2 series solution of the problem for the case where βκ < 0:

χb(r) = Nb

∞∑
n=0

√
�(n + 1)

/
�

(
n + 1 − 2κ + 1

β

)
P̂

− κ+1/2
β

+ 1
2

n (y, θ)ψb
n (r), (3.22a)

for ρ2 > 1. θ and y are defined below equation (3.15a) and Nb is an overall normalization
constant. The components of the spinor basis element ψb

n(r) are given by equations (3.19a)
and (3.19b). Now, in the case where 1 > ρ2 > 0, the solution becomes

χb(r) = Nb

∞∑
n=0

(−)n

√
�(n + 1)

/
�

(
n + 1 − 2κ + 1

β

)
P̂

− κ+1/2
β

+ 1
2

n (y, θ)ψb
n (r). (3.22b)
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In the following subsection we obtain the third solution that corresponds to the choice (3.5c)
which is actually needed only if βκ > 0 and κ = −1 (	 = 0) or if one chooses to take the
parameter ρ = ±1.

3.3. Solution in the spinor basis (3.1) and (3.5c)

The two components of the spinor basis functions in this case are:

φ+
n (r) = anx

α e−x/2Lν
n(x), (3.23a)

φ−
n (r) = -λωτβ anx

α−1/β e−x/2{[(2γ + 1/β) + ρ(2n + ν + 1)]Lν
n(x)

− (1 + ρ)(n + ν)Lν
n−1(x) + (1 − ρ)(n + 1)Lν

n+1(x)
}
, (3.23b)

where ν = 2α −1−1/β, ρ = sign(βA) = ±1 and ω = |2A/β|1/β . Moreover, we impose the
conditions from table 1 that α > 1/β for β > 0 and α > −1/2β for β < 0. Inserting these
spinor components into (3.6) with ε = +1 and using the orthogonality and recurrence relations
of the Laguerre polynomials we obtain the following elements of the symmetric tridiagonal
matrix representation of the Dirac operator,

(H − 1)n,n = 4 -λ2ω2βτ

{
p

[(
n + α + ργ +

ρ − 1

2β

)2

+

(
n + α − ρ

2
− 1

2β

)2

− ν2

4

]
+ u

(
n + α + ργ +

ρ − 1

2β

)}
(3.24a)

(H − 1)n,n−1 = −4 -λ2ω2βτ

[
p

(
n + α + ργ − ρ + 1

2
+

ρ − 1

2β

)
+

1

2
u

] √
n(n + ν), (3.24b)

where the real parameter p is defined in (3.9) above and u = ρ(κ − βγ ). Therefore, the
‘wave equation’ (H − 1)|χ〉 = 0, with |χ〉 = ∑

m fm|ψm〉, results in the following three-term
recursion relation for the expansion coefficients of the spinor wavefunction,[

(n + ν + 1)(n + d + 1) + n(n + d) −
(

ν + 1

2

)2

+ z(z + ρu/p)

]
fn − (n + d)

√
n(n + ν)fn−1

− (n + d + 1)
√

(n + 1)(n + ν + 1)fn+1 = 0, (3.25)

where we have defined the following two quantities:

z = γ + 1/2β, d = α + ργ − ρ + 1

2
+

ρ − 1

2β
+

u

2p
. (3.26)

Introducing hn = √
�(n + 1)/�(n + ν + 1) fn, we could rewrite this recursion relation in the

following form:[
(n + ν + 1)(n + d + 1) + n(n + d) −

(
ν + 1

2

)2

+ z(z + ρu/p)

]
hn − n(n + d)hn−1

− (n + ν + 1)(n + d + 1)hn+1 = 0. (3.27)

Comparing this with the three-term recursion relation (A.11) for the continuous dual Hahn
orthogonal polynomials Sλ

n(y; a, b) [19] shown in the appendix, we conclude that

fn =
√

�(n + ν + 1)

�(n + 1)
S

ν+1
2

n

(
−iy; ν + 1

2
, d +

1 − ν

2

)
, (3.28)
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where y2 = z(z + ρu/p), and we have introduced a modified continuous dual Hahn polynomial
Ŝλ

n (y; a, b) which we could define as

Ŝλ
n (y; a, b) ≡ Sλ

n(−iy; a, b) = 3F2

(−n, λ + y, λ − y

λ + a, λ + b

∣∣∣∣1
)

. (3.29)

Imposing the kinetic balance condition, which makes u = 0, γ = κ/β and z = κ + 1/2
β

, results

in the following L2 series solution for ρ = ±1 and ±βκ > 0,

χc
±(r) = Nc

∞∑
n=0

√
�(n + ν + 1)/�(n + 1)Ŝ

ν+1
2

n

(
y; ν + 1

2
,

1 ∓ 1

2
± 2κ + 1

2β

)
ψc

n(r), (3.30)

and where y2 = (
κ + 1/2

β

)2
, Nc is a normalization constant and the components of the spinor

basis element ψc
n(r) are given by equations (3.23a) and (3.23b).

4. Discussion

It is instructive to show that the limited solution we have previously obtained in [6] is a
special case of the general solution constructed here. This is done by reducing the tridiagonal
representation to a diagonal one. As explained in the introduction section, this could simply
be accomplished by imposing conditions (1.3) on the recursion relation (1.2). It should also be
noted that diagonalization automatically implies that the basis must satisfy the kinetic balance
relation. Now, the three-term recursion relation (3.10) which corresponds to (3.5a) and that
which corresponds to (3.5b) could be written collectively as follows,

[(
2n + 1 ± 2κ + 1

β

)
σ+ + 2ζ

]
fn − σ−

√
n

(
n ± 2κ + 1

β

)
fn−1

− σ−

√
(n + 1)

(
n + 1 ± 2κ + 1

β

)
fn+1 = 0 (4.1)

for ±βκ > 0 and where σ± and ζ are given by (3.14). Conditions (1.3) give

ρ2 = 1 and
2κ + 1

β
(ρ ± 1) + 1 − ρ = −2n. (4.2)

The only possible solution of (4.2) is n = 0, ρ = +1 and βκ < 0. This fully agrees with our
earlier result on page 4561 of [6] with the following correspondence between the parameters:
β → (v + 1/2)−1 and ωβ → λ2.

Finally, we address the negative energy solution for which ε = −1. In this case, the
kinetic balance relation (2.5) could only be written as ϕ+ = -λ

2

(− κ
r

− A
rµ + d

dr

)
ϕ−. This means

that in this case the lower spinor component takes the lead. That is, expression (3.1) will be
taken for the lower component of the spinor basis whereas the expressions in the set (3.5)
refer to the upper component. Moreover, the solution for the case ε = −1 is obtained from
that for ε = +1 by the replacement A → −A, κ → −κ and φ±

n → φ∓
n . As an example,

solution (3.30) in this case becomes

χc
±(r) = Nc

∞∑
n=0

√
�(n + ν + 1)/�(n + 1) Ŝ

ν+1
2

n

(
y; ν + 1

2
,

1 ∓ 1

2
∓ 2κ − 1

2β

)
ψc

n(r) (4.3)
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for ρ = ∓1 and ∓βκ > 0, and where y2 = (
κ − 1/2

β

)2
. The components of this spinor basis,

ψc
n(r), are obtained from (3.23a) and (3.23b) as

φ+
n (r) = -λωτβ anx

α−1/β e−x/2
{
[(2γ + 1/β) − ρ(2n + ν + 1)]Lν

n(x)

+ (ρ − 1)(n + ν)Lν
n−1(x) + (ρ + 1)(n + 1)Lν

n+1(x)
}

(4.4a)

φ−
n (r) = anx

α e−x/2Lν
n(x). (4.4b)

Appendix

The following are useful formulae and relations satisfied by the orthogonal polynomials that
are relevant to the developments carried out in this work. They are found in most textbooks and
monographs on orthogonal polynomials [19, 20]. We list them here for ease of reference. In
these formulae 2F1 stands for the hypergeometric function, 1F1 is the confluent hypergeometric
function, 3F2 is the generalized hypergeometric series and � is the gamma function.

1. The Laguerre polynomials Lν
n(x):

Lν
n(x) = �(n + ν + 1)

�(n + 1)�(ν + 1)
1F1(−n; ν + 1; x) (A.1)

where ν > −1 and n = 0, 1, 2, . . .

xLν
n = (2n + ν + 1)Lν

n − (n + ν)Lν
n−1 − (n + 1)Lν

n+1 (A.2)

xLν
n = (n + ν)Lν−1

n − (n + 1)Lν−1
n+1 (A.3)

Lν
n = Lν+1

n − Lν+1
n−1 (A.4)

x
d

dx
Lν

n = nLν
n − (n + ν)Lν

n−1 (A.5)

[
x

d2

dx2
+ (ν + 1 − x)

d

dx
+ n

]
Lν

n(x) = 0 (A.6)

∫ ∞

0
xν e−xLν

n(x)Lν
m(x) dx = �(n + ν + 1)

�(n + 1)
δnm. (A.7)

2. The Meixner–Pollaczek polynomials P λ
n (y, θ):

2[(n + λ) cos θ + y sin θ ]P λ
n − (n + 2λ − 1)P λ

n−1 − (n + 1)P λ
n+1 = 0 (A.8)

P λ
n (y, θ) = �(n + 2λ)

�(n + 1)�(2λ)
einθ

2F1(−n, λ + iy; 2λ; 1 − e−2iθ ) (A.9)

where λ > 0 and 0 < θ < π .∫ +∞

−∞
ρλ(y, θ)P λ

n (y, θ)P λ
m(y, θ) dy = �(n + 2λ)

�(n + 1)
δnm (A.10)

where ρλ(y, θ) = 1
2π

(2 sin θ)2λ e(2θ−π)y |�(λ + iy)|2.
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3. The continuous dual Hahn polynomials Sλ
n(y; a, b):

y2Sλ
n = [(n + λ + a)(n + λ + b) + n(n + a + b − 1) − λ2]Sλ

n

− n(n + a + b − 1)Sλ
n−1 − (n + λ + a)(n + λ + b)Sλ

n+1 (A.11)

Sλ
n(y; a, b) = 3F2

(−n, λ + iy, λ − iy
λ + a, λ + b

∣∣∣∣1
)

(A.12)

where y2 > 0 and λ, a, b are positive except for a pair of complex conjugates with positive
real parts.∫ ∞

0
ρλ(y)Sλ

n(y; a, b)Sλ
m(y; a, b) dy = �(n + 1)�(n + a + b)

�(n + λ + a)�(n + λ + b)
δnm (A.13)

where ρλ(y) = 1
2π

∣∣�(λ+iy)�(a+iy)�(b+iy)

�(λ+a)�(λ+b)�(2iy)

∣∣2
.
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